Abstract
Three-dimensional open porous scaffolds are commonly used in tissue engineering (TE) applications to provide an initial template for cell attachment and subsequent cell growth and construct development. The macroscopic geometry of the scaffold is key in determining the kinetics of cell growth and thus in vitro 'tissue' formation. In this study, we developed a computational framework based on the level set methodology to predict curvature-dependent growth of the cell/extracellular matrix domain within TE constructs. Scaffolds with various geometries (hexagonal, square, triangular) and pore sizes (500 and 1,000[Formula: see text]m) were produced in-house by additive manufacturing, seeded with human periosteum-derived cells and cultured under static conditions for 14days. Using the projected tissue area as an output measure, the comparison between the experimental and the numerical results demonstrated a good qualitative and quantitative behavior of the framework. The model in its current form is able to provide important spatio-temporal information on final shape and speed of pore-filling of tissue-engineered constructs by cells and extracellular matrix during static culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.