Abstract

The hemodynamics plays a key role in the transport processes, in the blood stream, and thus, on the accumulation and deposition of lipids and medication on the vessel’s wall. Therefore, understanding the hemodynamics of the arterial veins can advance the understanding of transport phenomena and prediction of deposition and buildup of the low-density lipoproteins (LDL) and particulate medication, on the arterial surfaces. Previous studies have showed that for pulsatile flow, laminar-turbulent flow transition may occur, particularly during intense exercises. Experimental and computational studies, of hemodynamics and transport phenomena, pose significant challenges due to the complex aorta’s geometry and arterial fluid dynamics. In the present study, we propose a large-eddy simulation (LES), computational approach, to carry out the hemodynamics and medication dispersion and deposition studies, inside the descending aorta. The analysis reveals that the flow separation causes a preferential deposition and build-up of low-density lipoproteins (LDL) on the arterial surface. Our study also shows that the flow boundary-layer separation is associated with an increase in deposition of the low-density lipoproteins. The analysis reveals the presence of Dean vortices, inside the aorta branches, which contribute to the reduction of the deposition and build-up of low-density lipoproteins on the arterial surfaces. The analysis of medication dispersion and deposition, inside the descending aorta, shows that the total medication deposition increases with the increase of particle size and density. Particles of fiber-like shape are more prone to deposition, and this is due to the fact that fiber-like particles align perfectly with the flow streamlines. Thus, the interaction of complex turbulent eddies with vessel’s wall causes medication deposition. The research shows that LES is a promising tool in the analysis of hemodynamics and medication transport and therefore, it may assist medical planning by providing surgeons with the elements of the blood flow such as, pressure, velocity, vorticity, wall-shear stresses, which cannot be measured in vivo and obtained with imaging techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.