Abstract

All of the environmental conditions in nature act on an organism simultaneously. However, in experimental studies of the factors influencing metamorphosis, each factor needs to be examined individually in order to disentangle its specific effects. However, it is challenging to then build properly integrated models which include data on all of the different factors evaluated in different experiments. This study set out to develop a predictive model which could synthesize the results of several experiments on survival, development and growth of Natterjack toad (Epidalea calamita) tadpole guilds. The proposed Population Dynamic P System (PDP) model enables estimates of growth and development during the larval phase, under different environmental conditions, weather conditions, predator density, and pond characteristics and management. The architecture of the model allows the inclusion of an indefinite number of parameters and interactions, with all inputs interacting in parallel, and enables solutions to complex modeling approaches. Using the model with a range of field data, we found that the importance of predation pressure on Natterjack toad tadpole guilds exceeds the potential effects of variations in temperature and precipitation. The impact of introduced invasive predators therefore arguably poses the greatest threat to this species. This type of model holds promise as a reliable management and conservation tool for this and other species, especially where interactions between environmental factors make the impacts of individual factors difficult to predict.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call