Abstract

Pressure wave machinery constitutes promising devices in various engineering propulsion applications such as superchargers in automobile engines and topping devices in gas turbines. This article presents applications of a numerical model for the flow field prediction inside wave rotors. The numerical method used consists of an approximate Roe solver that takes into account viscous and thermal losses inside the rotor as well as leakage losses at the extremities of the rotor. The model is extensively validated and then is applied on configurations suited for automobile engine supercharging and for topping devices for gas turbines. For both cases, satisfactory results are obtained by the comparison of the numerical predictions against experimental data available in the literature. It is concluded that the present method can accurately predict the basic unsteady flow patterns inside the rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.