Abstract

Although engineered microbial production of natural compounds provides a promising alternative method to plant production and extraction, the process can be inefficient and ineffective in terms of time and cost. To render microbial systems profitable and viable, the process must be optimized to produce as much product as possible. To this end, this work illustrates the construction of a new probabilistic computational model to simulate the microbial production of a well-known cardioprotective molecule, resveratrol, and the implementation of the model to enhance the yield of the product in Escherichia coli. This model identified stilbene synthase as the limiting enzyme and informed the effects on changes in concentration and source of this enzyme. These parameters, when employed in a laboratory system, were able to improve the titer from 62.472 mg/L to 172.799 mg/L, demonstrating the model's ability to produce a useful simulation of a dynamic microbial resveratrol production system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.