Abstract

A computational mechanistic study has been performed on Pd(II)-catalyzed enantioselective reactions involving acetyl-protected aminomethyl oxazolines (APAO) ligands that significantly improved reactivity and selectivity in C(sp3)-H borylation. The results support a mechanism including initiation of C(sp3)-H bond activation generating a five-membered palladacycle and ligand exchange, followed by HPO42--promoted transmetalation. These resulting Pd(II) complexes further undergo sequential reductive elimination by coordination of APAO ligands and protonation to afford the enantiomeric products and deliver Pd(0) complexes, which will then proceed by oxidation and deprotonation to regenerate the catalyst. The C(sp3)-H activation is found to be the rate- and enantioselectivity-determining step, in which the APAO ligand acts as the proton acceptor to form the two enantioselectivity models. The results demonstrate that the diverse APAO ligands control the enantioselectivity by differentiating the distortion and interaction between the major and minor pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.