Abstract
The manufacturing process of brim forming in paperboard containers consists of taking a thin paperboard shell and forming a brim to provide additional stiffness to the structure. A paper cup is an example of such a structure manufactured at rates exceeding 300 units per minute. A realistic model for the manufacturing process is not available and the effects of process and material parameters are not well understood. In this study, a finite element model of this highly nonlinear problem is presented. The model takes into account the material orthotropy and nonlinear elastic-plastic behavior, die paperboard contact interaction during loading and unloading, and friction between the metal die and paperboard, die geometry, and environmental conditions. Model predictions of the force-displacement curve agree well with the experimentally observed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.