Abstract

Thymidylate synthase (TS) is a crucial target of cancer drug discovery and is mainly involved in the De novo synthesis of the DNA precursor thymine. In the present study, to generate reliable models and identify a few promising molecules, we combined QSAR modelling with the pharmacophore hypothesis-generating technique. Input molecules were clustered on their similarity, and a cluster of 74 molecules with a pyrimidine moiety was chosen as the set for 3D-QSAR and pharmacophore modelling. Atom-based and field-based 3D-QSAR models were generated and statistically validated with R2 > 0.90 and Q2 > 0.75. The common pharmacophore hypothesis(CPH) generation identified the best six-point model ADHRRR. Using these best models, a library of FDA-approved drugs was screened for activity and filtered via molecular docking, ADME profiling, and molecular dynamics simulations. The top ten promising TS-inhibiting candidates were identified, and their chemical features profitable for TS inhibitors were explored. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.