Abstract

Unbalance is the principal cause of excitation of lateral vibrations of rotors and generation of the forces transmitted through the rotor supports to the foundations. These effects can be significantly reduced if damping devices are added to the constraint elements. To achieve their optimum performance, their damping effect must be controllable. The possibility of controlling the damping force is offered by magnetorheological squeeze film dampers. This article presents an original investigation of the dynamical behavior of a rigid flexibly supported rotor loaded by its unbalance and equipped with two short magnetorheological squeeze film dampers. In the computational model, the rotor is considered as absolutely rigid and the dampers are represented by force couplings. The pressure distribution in the lubricating layer is governed by a modified Reynolds equation adapted for Bingham material, which is used to model the magnetorheological fluid. To obtain the steady state solution of the equations of motion, a collocation method is employed. Stability of the periodic vibrations is evaluated by means of the Floquet theory. The proposed approach to study the behavior of rigid rotors damped by semi-active squeeze film magnetorheological dampers and the developed efficient computational methods to calculate the system steady state response and to evaluate its stability represent new contributions of this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.