Abstract

Molybdenum is the only 4d metal found in almost all life. One such molybdenum-containing enzyme is sulfite oxidase, which also contains the dithiolene-molybdopterin ligand. Sulfite oxidase is essential in the degradation of sulfur-containing compounds such as cysteine and methionine. Past work has shown parallels in the chemistry of dithiolene–metal and diselenolene–metal complexes. Thus, in this present work, the oxygen atom transfer mechanism for a diselenolene sulfite oxidase biomimetic complex was investigated using computational tools, the results of which were compared to the analogous dithiolene biomimetic complex. From the results obtained, the molybdenum-diselenolene sulfite oxidase biomimetic complex is able to catalyse the oxygen atom transfer and does so with a marginally lower value of ΔrG‡than that for the analogous dithiolene complex. In particular, it was found that on average, the diselenolene complex had an activation energy 1.2 kJ mol–1lower in energy than the analogous dithiolene complex. However, the calculated value of ΔrG suggests that the oxidation of sulfite is more favourable for the dithiolene complex where the average difference in reaction aqueous Gibbs reaction energy was –9.4 kJ mol–1relative to the diselenolene complex. It is noted that with the use of D3 and D3BJ corrections in combination with the B3LYP functional, the barrier for oxygen atom transfer is lowered by more than 30.0 kJ mol–1for both the diselenolene and dithiolene complexes. Such results suggest that to study such oxo-transfer reactions, the proper treatment of dispersion interaction is necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call