Abstract
ABSTRACTEddy Current Testing (ECT) plays a key role in detecting cracks and defects in conductors. The present study examines for the first time how the subregion method as an effective mathematical and computational technique can be admixed with Finite Element Method (FEM) to study multiple defects parameters for ECT issues. Separating a defect region from the entire domain in any computational technique will save both time and storage space. Examples of different types of defects are presented in this article . A tangible result of processing time reduction by 90% has been achieved which has led us to consider the subregion FEM method as an effective method in solving different Nondestructive Evaluation (NDE) problems. An agreement between our results and others using classical FEM has been achieved which could lead to using this technique in online and field testing problems. The presented subregion FEM algorithm was verified experimentally with good agreement by testing Aluminum (T6061-T6) samples with defects. A Tunneling Magnetoresistive (TMR) sensor was used to measure the component of the magnetic field from normal to the sample top surface. A major component of minimizing processing time was achieved, which could lead to using this technique in online and field testing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.