Abstract

Porphyrin compounds have unique advantages because of their wide absorption range (about 300–1000 nm) and good planarity. At present, the effects of metal substitutions of porphyrin compounds on their photovoltaic properties are still not clear. In this paper, we have systematically modelled a series of porphyrin donors MP-TBO (M = 2H, Mg, Cu, Fe, Co, Zn and Ni), in which ZnP-TBO has been experimentally synthesized and the power conversation efficiency of organic solar cell based on it is up to 12.08 %. The photovoltaic properties of these MP-TBO molecules have been investigated via density functional theory (DFT) and time-dependent DFT. We find that CoP-TBO and NiP-TBO both have worse planarity and smaller dipole moments than other compounds. The electronic absorption spectra of these porphyrin donors all show three main absorption peaks. However, metal substitutions blue-shift the wavelength of absorption peaks and lower total absorption strength in the visible and near-infrared regions. Finally, we find that MgP-TBO and H2P-TBO seem to be potential donors because both have more red-shifted wavelength of absorption peaks and higher absorption strength than other metal substitutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.