Abstract

A metal mediated coordination-insertion pathway for the ring-opening polymerization (ROP) of L-lactide by an ionic {(NHC)(2)Ag}(+)X(-) (X = halide) type silver complex of N-heterocyclic carbene (NHC) has been investigated using the density functional theory (DFT) method. A clear insight into the lactide insertion process could be obtained by modeling two consecutive monomer addition steps with the first one mimicking chain initiation with the second representing a propagation step. In particular, in each of the cycles, the reaction initiates with the formation of a lactide coordinated species, [1+LL] and [2+LL] that transforms into a metal bound cyclic lactide intermediate, I([1+LL]→2) and I([2+LL]→3), which subsequently ring opens to give the lactide inserted products, 2 and 3. The estimated overall activation barrier for the initiation step is 42.0 kcal mol(-1) while the same for the propagation step is 31.5 kcal mol(-1). Studies on higher monomer insertions showed a decrease in the relative product energies as anticipated for an addition polymerization pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call