Abstract

The rupture of intracranial aneurysms might lead to permanent disability or even death. One possible endovascular treatment is the deployment of flow diverters (FDs), which reduces flow into the sac and promotes thrombosis. Computational fluid dynamics simulations were used to assess the flow patterns and dynamics. The concept of energy loss, as a measure of necessary work done to overcome flow resistance, was utilized to correlate with clinical outcome. If a surgical operation is successful, the flow would be diverted to a shorter path and energy loss should be reduced. Conversely, persistent flow in the sac, associated with treatment failure, would display an increased energy loss as blood is then squeezed through the stent pores. Four illustrative clinical cases, involving both bifurcation and sidewall aneurysms, were selected. To reduce the numerical complexity, earlier works in the literature had used a porous medium approximation for the FDs. Here, the FD was simulated explicitly as a virtual (or computer-generated) stent, which would likely provide a more accurate description. Furthermore, quantitative comparisons between the approaches of virtual stenting and a porous medium with typical parameters were conducted by examining the effective flow influx into the aneurysm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.