Abstract
SummaryIn the present study, a general dynamic data‐driven application system (DDDAS) is developed for real‐time monitoring of damage in composite materials using methods and models that account for uncertainty in experimental data, model parameters, and in the selection of the model itself. The methodology involves (i) data data from uniaxial tensile experiments conducted on a composite material; (ii) continuum damage mechanics based material constitutive models; (iii) a Bayesian framework for uncertainty quantification, calibration, validation, and selection of models; and (iv) general Bayesian filtering, as well as Kalman and extended Kalman filters. A software infrastructure is developed and implemented in order to integrate the various parts of the DDDAS. The outcomes of computational analyses using the experimental data prove the feasibility of the Bayesian‐based methods for model calibration, validation, and selection. Moreover, using such DDDAS infrastructure for real‐time monitoring of the damage and degradation in materials results in results in an improved prediction of failure in the system. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.