Abstract

Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors.

Highlights

  • Intrafraction motion artifacts reduce the image quality and quantitative accuracy of nuclear medicine imaging [1]

  • The findings of this study suggest that the combination of chest angular velocity and accelerations using independent component analysis (ICA) and principal component analysis (PCA) can help to develop a robust dual cardiac and respiratory gating solution using only microelectromechanical systems (MEMS)

  • We performed a quantitative assessment of the accuracy of the respiratory waveform measured by the gyroscope, accelerometer, and their combination as compared to a traditional technique for respiratory monitoring, such as the respiration belt and real-time position management (Varian’s Real-time Position Management (RPM))

Read more

Summary

Introduction

Intrafraction motion artifacts reduce the image quality and quantitative accuracy of nuclear medicine imaging [1]. Respiratory and cardiac motions may cause image blurring in positron emission tomography (PET), mismatch between computed tomography (CT) and PET images, and CT artifacts, and result in difficulties in delineating boundaries of small targets [2]. Motion artifacts may result in failure in recognizing small mobile volumes that are potentially cancerous [3]. The degradation of image quality due to intrafraction motion and subsequent effects on radiotherapy dose planning and delivery reduce the reliability and accuracy of the clinical interventions, leading to incorrect diagnosis, unnecessary treatment, and insufficient therapy [6]. To minimize motion-related inaccuracies, gating of the acquired PET image by dividing the list-mode data into series of temporal windows which corresponds to the phases of cardiac and/or respiratory phases has shown effective and successful results [6,7,8]

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.