Abstract

This paper introduces a computational aesthetics framework utilizing computer vision (CV) and artificial neural networks (ANN) to predict the aesthetic preferences of groups of people for architecture. It relies on part-to-whole theories from aesthetics and cognitive psychology. A survey of a group of people on preferences of images is held to record an average hedonic response (AHR). CV algorithms MSER and SAM recognize parts in images. Birkhoff’s aesthetic measure formula is adapted by employing the number of parts and their connections. These quantities are used as input layers of an ANN, and the AHR is the target output. The ANN evaluates images to output a predicted hedonic response (PHR), which is tested as a criterion in parametric design space navigation and in mapping the latent space of GANs. We conclude that such a framework is a heuristic method for better understanding the design and latent spaces and exploring designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.