Abstract

A high-fidelity large-eddy simulation and unsteady flamelet combustion model construct is deployed to numerically investigate the effects of crosswind magnitude and pool fire shape on large-scale pool fire attributes. These include general flame dynamics, flame shape and radiative flux magnitude in and around the fire. Three pool fire shapes at a nominal length scale of 10 m are subjected to four crosswind magnitudes between 0 and 20 m s $^{-1}$ . The pool shapes studied are circular, square and rectangular. The study includes the sensitivity of parameters to mesh and time step refinement. Results demonstrate that the rectangular shape, under crosswind, has low-levels of vertical velocity induction, resulting in a plume that is closer to the ground. In the quiescent regime, under-resolved meshes provide a higher radiative heat flux prediction compared with the most refined mesh. However, as crosswind increases, low mesh resolutions underpredicted radiative flux. This is due to the coarse mesh resolution not capturing small-scale vortical features that increased mixing and combustion efficiency. A transition of peak radiative flux with respect to crosswind occurs from the leeward- to windward-side of the pool, while sharp pool features result in larger radiative heat fluxes concentrated in regions of high scalar dissipation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.