Abstract
ABSTRACTIt is an important problem to compare two time series in many applications. In this paper, a computational bootstrap procedure is proposed to test if two dependent stationary time series have the same autocovariance structures. The blocks of blocks bootstrap on bivariate time series is employed to estimate the covariance matrix which is necessary in order to construct the proposed test statistic. Without much additional effort, the bootstrap critical values can also be computed as a byproduct from the same bootstrap procedure. The asymptotic distribution of the test statistic under the null hypothesis is obtained. A simulation study is conducted to examine the finite sample performance of the test. The simulation results show that the proposed procedure with the bootstrap critical values performs well empirically and is especially useful when time series are short and non-normal. The proposed test is applied to an analysis of a real data set to understand the relationship between the input and output signals of a chemical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.