Abstract
We present a computational, group-theoretic approach to steerable functions. The approach is group-theoretic in that the treatment involves continuous transformation groups for which elementary Lie group theory may be applied. The approach is computational in that the theory is constructive and leads directly to a procedural implementation. For functions that are steerable with n finite number of basis functions under a k-parameter group, the procedure is efficient and is guaranteed to return the minimum number of basis functions. If the function is not steerable, a numerical implementation of the procedure could also be used to compute basis functions that approximately steer the function over a range of transformation parameters. Examples of both applications are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.