Abstract

A new computationally simple, speedy and accurate method is proposed to construct first-passage-time probability density functions for Gauss–Markov processes through time-dependent boundaries, both for fixed and for random initial states. Some applications to Brownian motion and to the Brownian bridge are then provided together with a comparison with some computational results by Durbin and by Daniels. Various closed-form results are also obtained for classes of boundaries that are intimately related to certain symmetries of the processes considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.