Abstract

Drug repurposing is an approach to identify new medical indications of approved drugs. This work presents a graph neural network drug repurposing model, which we refer to as GDRnet, to efficiently screen a large database of approved drugs and predict the possible treatment for novel diseases. We pose drug repurposing as a link prediction problem in a multi-layered heterogeneous network with about 1.4 million edges capturing complex interactions between nearly 42,000 nodes representing drugs, diseases, genes, and human anatomies. GDRnet has an encoder–decoder architecture, which is trained in an end-to-end manner to generate scores for drug–disease pairs under test. We demonstrate the efficacy of the proposed model on real datasets as compared to other state-of-the-art baseline methods. For a majority of the diseases, GDRnet ranks the actual treatment drug in the top 15. Furthermore, we apply GDRnet on a coronavirus disease (COVID-19) dataset and show that many drugs from the predicted list are being studied for their efficacy against the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call