Abstract

Dendritic spines are small protrusions from the dendritic branches of neurons. Influenced by internal and external signals and forces, even adult spines are not static but dynamically move. In this paper, we consider actomyosin-based spine motility with calcium signaling. The simulation begins with influx of calcium ions through glutamate receptors. Calcium Induced Calcium Release (CICR) with IP3 (inositol-1,4,5-trisphosphate) dynamics is also considered. The sensitivity of elasticity of actomyosin network is assumed to follow a Hill-type function of Ca2+ concentration. Several combinations in size of spine head and neck, physiology of Endoplasmic Reticulum (ER), and distribution of receptor/channels/exchangers are considered. Different functions of a spine as absorber, pumper and/or diffuser are observed. The computational framework used for these studies is the immersed boundary method with advection-electrodiffusion.

Highlights

  • A computational approach to dendritic spine motility with calcium signaling by the immersed boundary method with advection-electrodiffusion

  • Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

  • The simulation begins with influx of calcium ions through glutamate receptors

Read more

Summary

Introduction

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . A computational approach to dendritic spine motility with calcium signaling by the immersed boundary method with advection-electrodiffusion Address: Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.