Abstract

BackgroundTransforming growth factor-beta1 (TGF-β1) acts as a most effective growth inhibitor for normal epithelial cells. Loss of this anti-proliferative factor in breast tissues favors invasion and development of osteolytic metastases, aided by a master transcription factor, runt-related transcription factor 2 (Runx2). Several reports identified Runx2 regulation with the help of non-coding RNAs such as microRNAs (miRNAs) under physiological and pathological conditions. MethodsUsing bioinformatics tools such as miRDB, STarMir, Venny, TarBase, a unique list of miRNAs that putatively target the 3′ UTR Runx2 was identified. Further, the expression patterns of those miRNAs at the precursor and mature levels were studied by RT-qPCR analyses. Following this, computational analyses using software like TransmiR and bc-GenExMiner v4.6 were done to speculate the miRNA's other target genes that indirectly regulate Runx2 activity in breast cancer. ResultsThere were 13 miRNAs that putatively target Runx2 identified using bioinformatics tools. Among these miRNAs, miR-5703 expression was significantly downregulated at both precursor and mature levels upon TGF-β1-treatment in human breast cancer cells. Computational analyses speculated an indirect targeting of Runx2 by miR-5703 by influencing multiple Runx2 regulatory signaling pathways including Jak/Stat, MAPK, Wnt/β-Catenin, Notch, BMP, and PKA pathways. Furthermore, a correlation of the expression profiles of the speculated genes and Runx2 with miR-5703 was depicted in triple-negative breast cancer patients. ConclusionIdentification of miR-5703 and its network for Runx2 regulation directly or indirectly in breast cancer cells could significantly advance our understanding of breast cancer-mediated bone metastasis. In addition, it would potentially pave the way for miRNAs to be used as biomarkers and therapeutic agents in cancer research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.