Abstract

PurposeThis paper aims to develop a computational approach to analyze the mechanical behavior, perfusion bioreactor test and degradation of the designed scaffolds. Five types of pore architecture scaffolds have been made using a computer-aided designed tool and fabricated through fused deposition modeling.Design/methodology/approachCompressive structural analysis has been performed using the finite element method to forecast the mechanical performance of the scaffolds. Also, the experimental study was done to validate the simulation outcomes. A computational fluid dynamic analysis was performed to ascertain the fluid pressure distribution, velocity profile, wall shear stress, strain rate and permeability of scaffolds. The interconnected pore architecture of the scaffolds plays a crucial role in enhancing the mechanical properties and fluid flow characteristics.FindingsThe scaffolds with continuous vertical support columns resulted in better strength because they provide better ways to transfer the load. The pore architecture of the scaffold plays a significant role in the path of fluid flow. Scaffolds with regular interconnected pore architecture showed better accessibility of the fluid. The degradation analysis showed that the degradation rate is dependent on the architecture of the scaffolds because of different surface area to volume ratios.Originality/valueThe simulation results provide a straightforward prediction of the scaffold suitability in terms of mechanical strength, perfusion and degradation behavior.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call