Abstract
A computational approach based on finite difference scheme and a redefined extended B-spline functions is presented to study the approximate solution of time fractional advection diffusion equation. The Caputo time-fractional derivative and redefined extended B-spline functions have been used for the time and spatial discretization, respectively. The numerical scheme is shown to be O(h2+Δt2-α) accurate and unconditionally stable. The proposed method is tested through some numerical experiments involving homogeneous/non-homogeneous boundary conditions which concluded that it is more accurate than existing methods. The simulation results show superior agreement with the exact solution as compared to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.