Abstract

The allele frequency spectrum (AFS), or site frequency spectrum, is commonly used to summarize the genomic polymorphism pattern of a sample, which is informative for inferring population history and detecting natural selection. In 2013, Chen and Chen developed a method for analytically deriving the AFS for populations with temporally varying size through the coalescence time-scaling function. However, their approach is only applicable to population history scenarios in which the analytical form of the time-scaling function is tractable. In this paper, we propose a computational approach to extend the method to populations with arbitrary complex varying size by numerically approximating the time-scaling function. We demonstrate the performance of the approach by constructing the AFS for two population history scenarios: the logistic growth model and the Gompertz growth model, for which the AFS are unavailable with existing approaches. Software for implementing the algorithm can be downloaded at http://chenlab.big.ac.cn/software/.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call