Abstract

The location set covering problem continues to be an important and challenging spatial optimization problem. The range of practical planning applications underscores its importance, spanning fire station siting, warning siren positioning, security monitoring and nature reserve design, to name but a few. It is challenging on a number of fronts. First, it can be difficult to solve for medium to large size problem instances, which are often encountered in combination with geographic information systems (GIS) based analysis. Second, the need to cover a region efficiently often brings about complications associated with the abstraction of geographic space. Representation as points can lead to significant gaps in actual coverage, whereas representation as polygons can result in a substantial overestimate of facilities needed. Computational complexity along with spatial abstraction sensitivity combine to make advances in solving this problem much needed. To this end, a solution framework for ensuring complete coverage of a region with a minimum number of facilities is proposed that eliminates potential error. Applications to emergency warning siren and fire station siting are presented to demonstrate the effectiveness of the developed approach. The approach can be applied to convex, non-convex and non-contiguous regions and is unaffected by arbitrary initial spatial representations of space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call