Abstract
Two designs of an outlet stator for the Nimbus axial flow left ventricular assist device (LVAD) are analyzed at nominal operating conditions. The original stator assembly (Design 1) has significant flow separation and reversal. A second stator assembly (Design 2) replaces the original tubular outer housing with a converging-diverging throat section with the intention of locally improving the fluid dynamics. Both stator designs are analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). The computational and experimental methods indicate: 1) persistent regions of flow separation in Design 1 and improved fluid dynamics in Design 2; 2) blade-toblade velocity fields that are well organized at the blade tip yet chaotic at the blade hub for both designs; and 3) a moderate decrease in pressure recovery for Design 2 as compared with Design 1. The CFD analysis provides the necessary insight to identify a subtle, localized flow acceleration responsible for the decreased hydraulic efficiency of Design 2. In addition, the curiously low thrombogenicity of Design 1 is explained by the existence of a three-dimensional unsteady vortical flow structure that enhances boundary advection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ASAIO journal (American Society for Artificial Internal Organs : 1992)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.