Abstract
The adduction of fumaric acid to the sulfhydryl group of certain cysteine (Cys) residues in proteins via a Michael-like reaction leads to the formation of S-(2-succino)cysteine (2SC) sites. Although its role remains to be fully understood, this post-translational Cys modification (protein succination) has been implicated in the pathogenesis of diabetes/obesity and fumarate hydratase-related diseases. In this study, theoretical approaches to address sequence- and 3D-structure-based features possibly underlying the specificity of protein succination have been applied to perform the first analysis of the available data on the succinate proteome. A total of 182 succinated proteins, 205 modifiable, and 1750 non-modifiable sites have been examined. The rate of 2SC sites per protein ranged from 1 to 3, and the overall relative abundance of modifiable sites was 10.8%. Modifiable and non-modifiable sites were not distinguishable when the hydrophobicity of the Cys-flaking peptides, the acid dissociation constant value of the sulfhydryl groups, and the secondary structure of the Cys-containing segments were compared. By contrast, significant differences were determined when the accessibility of the sulphur atoms and the amino acid composition of the Cys-flaking peptides were analysed. Based on these findings, a sequence-based score function has been evaluated as a descriptor for Cys residues. In conclusion, our results indicate that modifiable and non-modifiable sites form heterogeneous subsets when features often discussed to describe Cys reactivity are examined. However, they also suggest that some differences exist, which may constitute the baseline for further investigations aimed at the development of predictive methods for 2SC sites in proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.