Abstract
We develop an approach which enables the decision maker to search for a compromise solution to a multiobjective stochastic linear programming (MOSLP) problem where the objective functions depend on parameters which are continuous random variables with normal multivariate distributions. The minimum-risk criterion is used to transform the MOSLP problem into its corresponding deterministic equivalent which in turn is reduced to a Chebyshev problem. An algorithm based on the combined use of the bisection method and the probabilities of achieving goals is developed to obtain the optimal or epsilon optimal solution of this specific problem. An illustrated example is included in this paper to clarify the developed theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.