Abstract

Driven by edge computing, how to efficiently deploy the meta-learner LSTM in the resource constrained FPGA terminal equipment has become a big problem. This paper proposes a compression strategy based on LSTM meta-learning model, which combined the structured pruning of the weight matrix and the mixed precision quantization. The weight matrix was pruned into a sparse matrix, then the weight was quantified to reduce resource consumption. Finally, a LSTM meta-learning accelerator was designed based on the idea of hardware–software cooperation. Experiments show that compared with mainstream hardware platforms, the proposed accelerator achieves at least 50.14 times increase in energy efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.