Abstract
trans-Fatty acids (TFAs) are unsaturated fatty acids containing at least one carbon–carbon double bond in trans configuration, which are classified into two groups according to their food source: industrial TFAs (iTFAs) and ruminant TFAs (rTFAs). Previous epidemiological evidence has demonstrated a preferential association of iTFAs, rather than rTFAs, with various diseases including cardiovascular diseases. However, it is still unknown how iTFAs exert their specific toxicity and what effective treatments are available to mitigate their toxicity. Here, we performed a comprehensive toxicological assessment of TFAs based on the toxicity mechanism that we established previously. We found that iTFAs including elaidic acid (EA), but not other types of fatty acids including rTFAs, had a strong pro-apoptotic effect upon treatment of extracellular ATP, a damage-associated molecular pattern that induces apoptosis through the apoptosis signal-regulating kinase 1 (ASK1)-p38 MAP kinase pathway. We also found that polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), potently suppressed EA-dependent increase in ASK1 activation and apoptosis. These results demonstrate that iTFAs specifically exert toxicity by targeting ASK1, and that PUFAs serve as their effective suppressor. Our study provides a molecular basis for risk assessment of foods, and for new prevention and treatment strategies for TFA-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.