Abstract

Presently, the world is considering the integration of small, medium and large-scale PV systems into both urban and remote rural electricity networks. This sees a transition towards a 100% renewable energy based electricity supply from the current conventional fossil fuel based electricity supply. Australia has a significant electricity generation potential from solar PV resources which also encourages the uptake of PV-battery hybrid systems. Australian utilities operating in the isolated and remote areas are now seriously considering the integration of solar PV systems as a long-term solution to reduce costs and facilitate sustainable electricity generation. This would also defer expensive grid extension to supply electricity to these dispersed remote communities. This study aims to model and optimise a remote Australian PV-diesel system incorporated with high levels of PV penetration and battery storage and investigate the system power quality issues. The study includes system component optimisation and techno-economic analysis which considers the outcomes regarding the cost of energy (AUD$/kWh), fuel savings potential and environmental impacts. Power quality issues have been explored by analysing the response of fast frequency-responsive (FFR) battery storage. The overall study has found that higher levels of PV penetration integrated with the current diesel operated system provides a comprehensive and efficient electricity supply and FFR Li-ion batteries can mitigate transient power quality issues and maintain system frequency within acceptable limits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call