Abstract

Cloud robotics has recently emerged as a collaborative technology between cloud computing and service robotics enabled through progress in wireless networking, large scale storage and communication technologies, and the ubiquitous presence of Internet resources over recent years. Cloud computing empowers robots by offering them faster and more powerful computational capabilities through massively parallel computation and higher data storage facilities. It also offers access to open-source, big datasets and software, cooperative learning capabilities through knowledge sharing, and human knowledge through crowdsourcing. The recent progress in cloud robotics has led to active research in this area spanning from the development of cloud robotics architectures to its varied applications in different domains. In this survey paper, we review the recent works in the area of cloud robotics technologies as well as its applications. We draw insights about the current trends in cloud robotics and discuss the challenges and limitations in the current literature, open research questions and future research directions.

Highlights

  • Robotics has seen significant developments over the past decades resulting in its increased applications to several real-world problems including automated manufacturing, extra-terrestrial operations, unmanned search and rescue, disaster robotics, self-driving vehicles, socially assistive robots, and healthcare and medical robots

  • The experimental setup for evaluation consisted of two robots and the cloud based architecture running in data center

  • We have provided a comprehensive review of the recent works in the area of cloud robotics

Read more

Summary

Introduction

Robotics has seen significant developments over the past decades resulting in its increased applications to several real-world problems including automated manufacturing, extra-terrestrial operations, unmanned search and rescue, disaster robotics, self-driving vehicles, socially assistive robots, and healthcare and medical robots. The robots used in many of these applications are single robots that are limited by their on-board hardware and computational constraints. To address this problem, the field of networked robotics [1] emerged almost two decades ago, which connected a team of robots through a wired or wireless communication network. Networked robots are constrained by information, as they have access to only the information accumulated by robots possessing a limited variety of sensors and connected through a network This can mostly lead to performance gains in static environments, but their performance quickly degrades when the environment drastically changes or when they are placed in new environments. Networked robots maintain machine-to-machine communication using communication protocols like proactive routing or ad hoc routing which

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.