Abstract

Predictive maintenance (PdM) is currently the most cost-effective maintenance method for industrial equipment, offering improved safety and availability of mechanical assets. A crucial component of PdM is the remaining useful life (RUL) prediction for machines, which has garnered increasing attention. With the rapid advancements in industrial internet of things and artificial intelligence technologies, RUL prediction methods, particularly those based on pattern recognition (PR) technology, have made significant progress. However, a comprehensive review that systematically analyzes and summarizes these state-of-the-art PR-based prognostic methods is currently lacking. To address this gap, this paper presents a comprehensive review of PR-based RUL prediction methods. Firstly, it summarizes commonly used evaluation indicators based on accuracy metrics, prediction confidence metrics, and prediction stability metrics. Secondly, it provides a comprehensive analysis of typical machine learning methods and deep learning networks employed in RUL prediction. Furthermore, it delves into cutting-edge techniques, including advanced network models and frontier learning theories in RUL prediction. Finally, the paper concludes by discussing the current main challenges and prospects in the field. The intended audience of this article includes practitioners and researchers involved in machinery PdM, aiming to provide them with essential foundational knowledge and a technical overview of the subject matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.