Abstract

Flexible dielectric chloroprene rubber (CR) nanocomposites reinforced by one-dimensional carbon nanotube (CNT)/two dimensional reduced graphene oxide hybrids have been prepared using two-roll mill mixing technique. Non-covalent π-π interaction between multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) nanosheets and the secondary interaction between fillers and chloroprene rubber matrix are responsible for generating the effective load transfer between RGO/MWCNTs and CR. The prepared RGO-MWCNT hybrid nanocomposites with high dielectric constant (≈650), low dielectric loss (≈0.42) and high energy storage efficiency (78.6%) values are practically good enough to use as a low cost polymeric dielectric layer in transistors. Furthermore, the prepared nanocomposites showed excellent electromagnetic effectiveness; a maximum shielding efficiency of 11.87 dB @ 3.5 GHz was achieved at 4 phr of MWCNT loading. This excellent electromechanical performance can be ascribed to the synergistic effect of RGO-MWCNT hybrid suggesting that this novel hybrid nanocomposite serves as an attractive candidate in modern electronics and electric power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call