Abstract

In this research, the free vibration analysis of lap joint laminated conical shell connected to laminated conical shell with adhesive layer for various boundary conditions are investigated. Based on the first-order shear deformation theory (FSDT), the main field equations of the analytical model are derived and the governing differential equations of laminated conical shell to laminated conical shell adherends lap joint are obtained for homogeneous and elasticity adhesive layers by using Hamilton principle method. Then, based on the generalized differential quadrature method (GDQM), the equilibrium equations of the structure adherends are investigated. The influence of the boundary conditions, the type of the composite materials and adhesive layer, the circumferential wave number, the length to radius ratio of the shell, and the length of overlap to length of shell ratio are studied. Furthermore, the thickness to radius ratio and the thickness of adhesive to thickness of shell ratio, as well as the various cone angles of conical shell on the natural frequency of laminated conical adherends shells connected to the conical shells with adhesive layer are investigated. For validation of the numerical results, the results are compared with the previous research and the comparisons show very good agreement. The numerical results show that with the increase of the internal shell and external shell of semi-angle, the non-dimensional frequency of lap joint connection of two laminated conical shells with adhesive layer decreased and increased, respectively. Furthermore, with the increase of the adhesive thickness to conical shell thickness ratio and lap joint length to length of conical shell ratio, the dimensionless natural frequency of the structure increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call