Abstract

Despite significant methodical improvements in the synthesis of N-doped graphene, there are still unsolved questions regarding the control of content and the configuration of nitrogen species in graphene honeycomb network. A cross-examination of X-ray photoelectron spectroscopy and Raman spectroscopy findings indicates that the nitrogen dopant amount is graphene thicknesses dependent, but the various nitrogen dopant coordination can be obtained on both double- and few-layer graphene. Characteristic defect features (D′) appearing in Raman spectra upon N-doping is sensitive to nitrogen dopant coordination, graphitic-pyridinic/nitrilic species and therefore the doping level can be identified. Pyridinic and nitrilic nitrogen as primary species turn graphene to p-type semiconductor after a mild thermal treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.