Abstract

Levan nanoparticles formation is a complicated phenomenon involving simultaneously polymeric reaction kinetics and nanoparticles self-assembly theory. These phenomena are studied in this work with experimental and computational methodologies. Specifically, the effect of different parameters on levan kinetics and nanoparticles production in a cell-free system environment have been studied. Results point out that 37 °C is the best temperature for synthesizing levan as well as the existence of a substrate inhibition effect for polymeric reaction. This work also highlights that raffinose can be used for producing and that an increase on the ratio enzyme-substrate increases the velocity of conversion. However, the previous experimental conditions did not produce an important effect on self-assembly formed levan nanoparticles (always 110 nm) as long as the required levan concentration (CAC) for nanoparticles reorganization is achieved. To have a better understanding of these results, a model was developed to explain numerically levan kinetics and nanoparticle self-assembly. This model was built by taking into account enzyme poisoning effect (also demonstrated experimentally) and a diffusion limited cluster model for the aggregation phenomenon. Simulation results fit properly experimental data and catalytic parameters as well as predicting accurately the value of CAC for producing its reorganization into nanoparticles by self-assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call