Abstract

Geometric progression (GP) method was utilized to investigate gamma-ray exposure build-up factors of fly-ash bricks for energies from 0.015 to 15 MeV up to 40 mfp penetration depth. The EBFs of the fly-ash bricks are dependent upon the photon energy, penetration depths, and the chemical compositions of the elements. Appreciable variations in exposure build-up factor (EBF) are noted for the fly-ash bricks. The EBFs were found to be small in low and high photon energy regions whereas very large in medium energy region. EBF of the bricks is inversely proportional to equivalent atomic number below 10 mfp for entire energy region of interest 0.015 to 15 MeV. The EBFs of fly-ash, brick of mud, and common brick were similar at 1.5 MeV photon energy. The EBF of the fly-ash bricks was found to be higher than that of the brick of mud, and common brick. The fast neutron removal cross sections of the fly-ash bricks, brick of mud, and common bricks were also calculated which were found to be in the same order. It is expected that this study should be very directly useful for shielding effectiveness of fly-ash brick materials and dose estimation.

Highlights

  • Safety inside residential and nonresidential building against the radiation is evaluated by the shielding properties by the parameters such as mass attenuation coefficients, energy absorption coefficients, and half-value layer

  • 3 MeV photon energy and for large penetration depths, exposure build-up factor becomes directly proportional to Zeq

  • Exposure build-up factor increases with the increase in penetration depth for all the fly-ash bricks

Read more

Summary

Introduction

Safety inside residential and nonresidential building against the radiation is evaluated by the shielding properties by the parameters such as mass attenuation coefficients, energy absorption coefficients, and half-value layer. The intensity of a gammaray beam through a medium follows the Lambert Beer law under three conditions namely, (i) monochromatic rays, (ii) thin absorbing material, and (iii) narrow beam geometry. The law can be applicable by using a correction factor, called as “build-up factor.”. The importance of build-up factor in attenuation studies was further recognized for multienergy gamma-rays with poor geometry [3]. Since 1950, due to the availability of reasonably accurate values of attenuation coefficients and cross section of the various mediums, a great progress has been made in the computation of build-up factor in different types of materials such as medical, dosimetric, shielding, and radiation protection

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.