Abstract

Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.