Abstract
In this paper, we perform a comprehensive study on the reverse current degradation mechanisms in Au/Ni/n-GaN Schottky diodes based on an in-depth understanding on the defect-related current transport mechanisms. Instead of traditional Poole–Frenkel (PF) emission model, an extended bulk-limited PF transport process, including the compensation effect, is adopted to explain the variation of the PF current slope as a function of the stress time, which majorly takes place inside the depletion region near the neutral semiconductor side. Based on the electrostatic analysis, we develop a shallow donor-like defects model to address the current degradation kinetics, which states that the energetic electrons produced by Fowler–Nordheim tunneling can induce significant Joule heating effect during the subsequent drift move of field, and give rise to the formation of the donor-like defects, and in turn enhance the surface electrical field to cause a significant increase of the tunneling component, in good agreement with the emission microscope observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.