Abstract

An intracranial aneurysm is a swelling in a weak area of a brain artery. The main cause of aneurysm is high blood pressure, smoking, and head injury. A ruptured aneurysm is a serious medical emergency that can lead to coma and then death. A digital subtraction angiogram (DSA) is used to detect a brain aneurysm. A neurosurgeon carefully examines the scan to find the exact location of the aneurysm. A hybrid model has been proposed to detect these aneurysms accurately and quickly. Visual Geometry Group 16 (VGG16) and DenseNet are two deep-learning architectures used for image classification. Ensembling both models opens the possibility of using diversity in a robust and stable feature extraction. The model results assist in identifying the location of aneurysms, which are much less prone to false positives or false negatives. This integration of a deep learning-based architecture into medical practice holds great promise for the timely and accurate detection of aneurysms. The study encompasses 1654 DSA images from distinct patients, partitioned into 70% for training (1157 images) and 30% for testing (496 images). The ensembled model manifests an impressive accuracy of 95.38%, outperforming the respective accuracies of VGG16 (94.38%) and DenseNet (93.57%). Additionally, the ensembled model achieves a recall value of 0.8657, indicating its ability to correctly identify approximately 86.57% of true aneurysm cases out of all actual positive cases present in the dataset. Furthermore, when considering DenseNet individually, it attains a recall value of 0.8209, while VGG16 attains a recall value of 0.8642. These values demonstrate the sensitivity of each model to detecting aneurysms, with the ensemble model showcasing superior performance compared to its individual components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call