Abstract

Poloxamers are triblock copolymers made of poly(ethylene glycol)–(poly(propylene glycol))–poly(ethylene glycol). They have been shown to enhance gene transfer in the muscle, and co-administration of polymers and DNA appeared to be crucial to obtain this effect. It is questionable then if some interaction occurs between polymers and DNA. Polymer interaction with membranes represents a second crucial point due to the central hydrophobic part of the triblock copolymers. Besides, the question of the polymer spanning or adsorbing to the surface has not been solved by now. We addressed these issues by means of sensitive techniques that allowed working in diluted conditions and gaining in comprehension of gene transfection. By means of simultaneous time-correlated single-photon counting and fluorescence correlation spectroscopy, we have shown that the diffusion time of a single DNA molecule and PicoGreen lifetime was not altered in the presence of the triblock copolymer L64. Polypropylene (glycol) interactions with dodecylphosphocholine micelles were shown to occur at a deep level by 1H NMR using doxyl probes located at the head or the lipid extremity of the micelles. The polypropylene (glycol) also interacted with lipid bilayers in a manner dependent on the cholesterol content, as shown by differential scanning calorimetry using liposomes. This interaction destabilised the membrane and allowed the release of small molecules. Finally, molecular dynamic simulation of the copolymer L64 in the presence of dodecylphosphocholine showed that the hydrophobic core of the polymer formed an extremely tight cluster, whose dimensions excluded the possibility of polymer spanning across the lipidic micelles. The simulation positively correlated with the destabilising effect observed on the liposomal membrane models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.