Abstract

The main objective of this work (Part I) is to conduct a comprehensive structural characterization of humic substances, using all the current fluorescence techniques: emission scan fluorescence (ESF), synchronous fluorescence spectroscopy (SFS), total luminescence spectroscopy (TLS or EEM) through the use of both 2-D contour maps and 3-D plots, fluorescence index and the λ0.5 parameter. Four humic substances were studied in this work: three of them were provided by the International Humic Substances Society (Suwannee River Fulvic Acid Standard, Suwannee River Humic Acid Standard and Nordic Reservoir Fulvic Acid Reference) and the other one was a commercial humic acid widely used as a surrogate for aquatic humic substances in various studies (Aldrich Humic Acid: ALHA). The EEM spectra for the three natural aquatic substances were quite similar, showing two main peaks of maximum fluorescence intensity: one located in the ultraviolet region and centered at around Ex/Em values of 230/437nm (peak A) and another one in the visible region, centered at around 335/460nm (peak C); however, the EEM spectrum of ALHA is completely different to those of natural aquatic humic substances, presenting four poorly resolved main peaks with a high degree of spectral overlap, located at 260/462, 300/479, 365/483 and 450/524nm. The synchronous spectra at Δλ=18 and 44nm (especially at Δλ=18nm) allowed the identification of a protein-like peak at λsyn around 290nm, which was not detected in the EEM spectra; as it happened with EEM spectra, the synchronous spectra of ALHA are quite different from those of the aquatic humic substances, presenting a higher number of bands that suggest greater structural complexity and a higher degree of polydispersity. Good correlations were achieved between 13C NMR aromaticity and both fluorescence index and λ0.5 parameter. The different spectra presented by ALHA compared to those shown by the natural aquatic humic substances for all the fluorescence techniques studied suggest an important structural difference between them, which cast doubt on the use of commercial humic acids as surrogates for natural humic substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.