Abstract

Series connection of devices is an effective way to achieve higher blocking voltage. SiC MOSFETs exhibit narrow short-circuit withstand time and generally much lower short-circuit robustness than silicon IGBTs. This puts a critical concern on their utilization, further stressing the importance of reliable protection. A complete short-circuit protection should be implemented to improve the reliability. In this article, a systematic short-circuit analysis methodology is proposed. Following this methodology, all the possible fault scenarios can be derived. Besides the traditional short-circuit scenarios, some unique short-circuit faults, such as a single device short- or open- circuit, have been found in series-connected SiC MOSFETs. These unique faults may not cause overcurrent, which means the traditional overcurrent-based protection is not applicable. This article proposes a method combining drain-source voltage logic signal and gate signal to comprehensively detect both classic short-circuit scenarios and unique fault scenarios. Another different point in series-connected devices is that the soft turn-off should be synchronized for each serial device to prevent excessive voltage unbalancing. The proposed short-circuit protection scheme is evaluated under each short-circuit scenario. The experimental results demonstrate that the proposed protection scheme can successfully protect the serial devices from further destruction within 500 ns for all short-circuit scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.