Abstract

Heat transfer equipment has been used in many different domestic and industrial applications. There has been a concentrated effort to create a heat exchanger design that will reduce energy requirements while saving materials and other costs. Increasing the effective heat transfer surface area or creating turbulence are two common ways to improve heat transfer and hence lower thermal resistance. The thermal Performance Factor is the ratio of the difference in heat transfer rate to the difference in friction factor and serves as a metric to assess the efficiency of heat transfer enhancement technologies. Different types of twisted tubes are used in many heat transfer improvement devices. geometrical parameters of the twisted tube encompassing the aspect ratio, twist ratio, twist direction, twist length, etc. impact the heat transfer. For Instance, oval pipes with unequal twist pitches have a thermal performance factor (1.75) and equal twist pitches have a thermal performance factor (1.98). furthermore, the thermal performance factor of the twisted tube with oval dimples is equal to 1.19 compared with the twisted tube without dimples. The thermal performance factor of the twisted tube with oval dimples is equal to 1.38 compared with the straight tube, with another improvement to the twisted tube that improves the heat transfer properties by disrupting the thermal boundary layer and destabilizing it. This paper presents a comprehensive investigation of passive heat transfer devices (twisted tubes) and their relative merits in a myriad of commercial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call