Abstract

Metal-organic frameworks (MOFs) are a versatile class of porous materials offering unprecedented scope for chemical and structural tunability. On account of their synthetic versatility, tunable and exceptional host-guest chemistry they are widely utilized in many prominent water remediation techniques. However, some of the MOFs present low structural stabilities specifically in aqueous and harsh chemical conditions which impedes their potential application in the field. Among the currently explored MOFs, UiO-66 exhibits structural robustness and has gained immense scientific popularity. Built with a zirconium-terephthalate framework, the strong Zr-O bond coordination contributes to its stability in aqueous, chemical, and thermal conditions. Moreover, other exceptional features such as high surface area and uniform pore size add to the grand arena of porous nanomaterials. As a result of its stable nature, UiO-66 offers relaxed admittance towards various functionalization, including synthetic and post-synthetic modifications. Consequently, the adsorptive properties of these highly stable frameworks have been modulated by the addition of various functionalities. Moreover, due to the presence of catalytically active sites, the use of UiO-66 has also been extended towards the degradation of pollutants. Furthermore, to solve the practical handling issues of the crystalline powdered forms, UiO-66 has been incorporated into various membrane supports. The incorporation of UiO-66 in various matrices has enhanced the rejection, permeate flux, and anti-fouling properties of membranes. The combination of such exceptional characteristics of UiO-66 MOF has expanded its scope in targeted purification techniques. Subsequently, this review highlights the role of UiO-66 in major water purification techniques such as adsorption, photocatalytic degradation, and membrane separation. This comprehensive review is expected to shed light on the existing developments and guide the inexhaustible futuristic scope of UiO-66 MOF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.