Abstract

Worldwide, Nanotechnology is frequently used for various applications in fields of medical science and therapeutics. However, biodegradable nanoparticles can improve the therapeutic value of various H2O soluble / insoluble drugs by improving solubility, bioavailability, retention time and protection of premature degradation of drugs in biological environment. In comparison to general Nanoparticles (NPs), encapsulation process with polymeric NPs are considered to be more fruitful and advanced as it provides better patient compliance. Since three decades through extensive research, polymers were first introduced as biodegradable or naturally dissolved surgical device. Current scenario utilizes polymeric based nanoparticles for the treatment of various ailments. Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease related to joints which hampers the normal life by exhibiting extra-articular manifestations. In-spite of major advances in drug therapies, still limitations are pervading with severe side effects in case of conventional drug delivery systems. Although different polymers are used for the preparation of Nanoparticles, utilization of USFDA and EMA approved Poly (lactic-co-glycolic acid) (PLGA) has gained much more popularity due to its unique features like low cytotoxicity, biocompatibility, biodegradability, targeted drug delivery, possibility of sustained release formulation and long biomedical applications. Nevertheless, researchers reveled that for targeted drug delivery, key factor involved is the persistance of NPs in systemic circulation of body. However, conventional NPs are rapidly opsonized and cleared through macrophages (fixed MPS) which is considered as foremost challenge in preparing these type of formulations. Hence, in order to overcome these problems, surface modification of conventional NPs with different molecules are needed so as to increase the circulation time and persistance of NPs in the blood. Furthermore, this review explores various key design parameters of RA targeted PLGA- based nanotechnology strategies in improving the treatment of rheumatoid arthritis. It comprehensively addresses various issues related to PLGA-based nanoparticles along with its method of preparation, surface modification and characterization techniques. Unlike usual drugs, nanoparticle drug delivery system aims at providing better patient compliance by delivering the drug to inflamed synovium by reducing systemic side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.